
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 286 (2005) 549–568
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
An exact solution for the natural frequencies and mode shapes
of an immersed elastically restrained wedge beam carrying an

eccentric tip mass with mass moment of inertia

Jong-Shyong Wu�, Chin-Tzu Chen

Department of Naval Architecture and Marine Engineering, National Cheng-Kung University,

Tainan, Taiwan 701, Republic of China

Received 26 April 2004; received in revised form 27 August 2004; accepted 13 October 2004

Available online 28 December 2004
Abstract

In general, the exact solutions for natural frequencies and mode shapes of non-uniform beams are
obtainable only for a few types such as wedge beams. However, the exact solution for the natural
frequencies and mode shapes of an immersed wedge beam is not obtained yet. This is because, due to the
‘‘added mass’’ of water, the mass density of the immersed part of the beam is different from its emerged
part. The objective of this paper is to present some information for this problem. First, the displacement
functions for the immersed part and emerged part of the wedge beam are derived. Next, the force (and
moment) equilibrium conditions and the deflection compatibility conditions for the two parts are imposed
to establish a set of simultaneous equations with eight integration constants as the unknowns. Equating to
zero the coefficient determinant one obtains the frequency equation, and solving the last equation one
obtains the natural frequencies of the immersed wedge beam. From the last natural frequencies and the
above-mentioned simultaneous equations, one may determine all the eight integration constants and, in
turn, the corresponding mode shapes. All the analytical solutions are compared with the numerical ones
obtained from the finite element method and good agreement is achieved. The formulation of this paper is
available for the fully or partially immersed doubly tapered beams with square, rectangular or circular
cross-sections. The taper ratio for width and that for depth may also be equal or unequal.
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1. Introduction

Since the dynamic behaviors of some structural systems, such as piles, water towers, fixed-type
platforms, robot arms and tall buildings, can be predicted from a cantilever beam carrying a tip
mass with reasonable accuracy, the literature concerned is plenty. For the uniform ‘‘dry beam’’
(without contacting with water or liquid) carrying a concentrated mass at its free end, the
pertinent literature includes the works of Gürgöze [1,2], Laura, et al. [3], Posiadala [4], Rossi, et al.
[5], Stephen [6], Takahashi [7], White and Heppler [8], and Wu and Lin [9]. For the non-uniform
(particularly the linearly tapered) dry beam with tip mass, reports of Auciello [10], Goel [11],
Laura and Gutierrez [12], Lee [13], Mabie and Rogers [14], Lau [15], and Wu and Chen [16] are
the most concerned. Comparing with the ‘‘dry beams’’, the literature relating to the ‘‘wet beams’’
(fully or partially immersed in water) is relatively sparse. The few contributors are: Chang and Liu
[17], Han and Sahglivi [18], Nagaya [19], Nagaya and Hai [20], Uscilowska and Kolodziej [21],
and Wu and Chen [22]. It can be seen that most of the papers relating to the wet beams are to
appear in the reference lists of Refs. [17,21,22]. By means of the transfer matrix method (TMM),
Chang and Liu [17] studied the natural frequencies of the fully and partially immersed restrained
columns. The structural models that they studied include the truncated solid and hollow cones,
and the doubly tapered beams with various taper ratios and various magnitudes of tip masses and
mass moment of inertias. By using the analytical method, Uscilowska and Kolodziej [21] studied
the ‘‘exact’’ eigenfrequencies and eigenfunctions of a uniform cantilever column carrying a tip
mass in the fully and partially immersed conditions. Using of the analytical-and-numerical-
combined method, Wu and Chen [22] determined the lowest five approximate natural frequencies
and mode shapes of the fully and partially immersed cantilever wedge beams carrying tip masses.
From the existing literature [17,21], one finds that the technique used for the free vibration
analysis of the wet beam is the same as that of the dry beam, the only difference is to replace the
mass density of material for the dry beam, r; by rþ C0

m ~r; where ~r is the mass density of the water
surrounding the beam and C0

m is the added mass coefficient relating to the shapes of the beam. It is
evident that this kind of approach will suffer difficulty for the partially immersed column, because
a cantilever beam with part of its length immersed in water is equivalent to a two-span beam, and
achieving the analytical solution is very difficult, as shown by Uscilowska and Kolodziej [21]. In
this paper, the same solution procedures as in Ref. [21] were used to determine the ‘‘exact’’ natural
frequencies and the associated mode shapes for the fully or partially immersed restrained wedge
beam carrying an eccentric tip mass possessing mass moment of inertia. Although the solution
procedures of this paper are the same as those of Ref. [21], there exist some differences: (i) the
beam studied in this paper is non-uniform and that in Ref. [21] is uniform; (ii) because of the last
difference in the beam types, the displacement functions for the non-uniform (wedge) beam
studied in this paper are in terms of the Bessel functions and those for the uniform beam in Ref.
[21] are in terms of the transcendent functions; (iii) to model the interactions between the beam
and the bottom soil, the lower (larger) end of the wedge beam is assumed to be restrained by a
translation spring and a rotational spring in this paper, but the lower end of the uniform beam is
assumed to be fixed in Ref. [21]. The formulation of this paper is available for the tapered beams
with taper ratio of width being different from that of depth [23], but this is not true for some of the
existing literature [10,12–14]. In addition to comparing with the existing information, all the
numerical results of this paper were checked with the corresponding ones obtained from the
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conventional finite element method (FEM), and good agreement was achieved. The formulation
of this paper is available for the tapered beams with either square or circular cross-sections. To
save space, only the square tapered beams are studied in this paper. The influence of water depths
and soil stiffness ratios on the free vibration characteristics of the fully or partially immersed
doubly tapered beams is investigated.
2. Equations of motion and closed-form solutions for an immersed wedge beam

By neglecting the effects of shear deformation and rotary inertia, the equations of motion for
the immersed tapered beam, as shown in Fig. 1, are given by [21,22,24]

q2

qx2
EIðxÞ

q2yðx; tÞ
qx2

� �
þ rAðxÞ

q2yðx; tÞ
qt2

¼ 0 for L0pxpLw; (1a)

q2

qx2
EIðxÞ

q2 ~yðx; tÞ
qx2

� �
þ ðrþ C0

m ~rÞAðxÞ
q2 ~yðx; tÞ

qt2
¼ 0 for LwpxpLI; (1b)

where E is Young’s modulus, AðxÞ is the cross-sectional area of the beam, I(x) is the moment of
inertia ofAðxÞ; r is the mass density of beam material, ~r is the mass density of water, C0

m is the
added mass coefficient for A(x) [25,26], y(x,t) (or ~yðx; tÞ) is the transverse displacement at position
x and time t. Besides, L1; L0 and Lw are the distances from the origin 0 of the xyz coordinate
system to the larger end of the tapered beam, the smaller end of the tapered beam and the free
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Fig. 1. Sketch for the immersed doubly tapered beam studied: (a) front view; (b) top view for the beam with rectangular

cross-sections; (c) top view for the beam with circular cross-sections.
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water surface, respectively. It is evident that L1 denotes the length of the ‘‘complete’’
tapered beam, L ¼ L1 � L0 denotes the length of the ‘‘truncated’’ tapered beam and d ¼

L1 � Lw denotes the immersed length of the beam (or the water depth). It is noted that the
origin 0 of the xyz coordinate system is located at the tip end of the complete tapered beam
(see Fig. 1(a)).
For free vibration, one has

yðx; tÞ ¼ W ðxÞeiot for L0pxpLw; (2a)

~yðx; tÞ ¼ ~W ðxÞeiot for LwpxpL1; (2b)

whereW(x) and ~W ðxÞ denote the amplitude functions of y(x,t) and ~yðx; tÞ; and represent the mode
shapes of the emerged part and the immersed part of the partially immersed beam, respectively. In
other words, any one mode shape of the entire partially immersed beam, W̄ ðxÞ; is a combination
ofW(x) and ~W ðxÞ; thus, W̄ ðxÞ � W ðxÞ for a fully emerged beam (i.e.,Lw ¼ L0) and W̄ ðxÞ � ~W ðxÞ
for a fully immersed beam (i.e.,Lw ¼ L1). Besides, in Eq. (2), o is the natural frequency of the
immersed beam, t is time and i ¼

ffiffiffiffiffiffiffi
�1

p
:

The substitution of Eqs. (2a) and (2b) into Eqs. (1a) and (1b), respectively, leads to

d2

dx2
EIðxÞ

d2W ðxÞ

dx2

� �
� o2rAðxÞW ðxÞ ¼ 0 for L0pxpLw; (3a)

d2

dx2
EIðxÞ

d2 ~W ðxÞ

dx2

� �
� o2ðrþ C0

m ~rÞAðxÞ ~W ðxÞ ¼ 0 for LwpxpL1: (3b)

For the linearly tapered beam with rectangular cross-sections, the area A1 and the moment of
inertia I1 at its larger end (located at x ¼ L1) are given by

A1 ¼ b1h1 and I1 ¼ b1h
3
1=12 (4a,b)

and those for the arbitrary cross-section located at

x ¼ x=L1 (5)

are given by

AðxÞ ¼ A1x
2 and IðxÞ ¼ I1x

4; (6a,b)

where b1 and h1 are the width and depth of the cross-section at the larger end of the tapered beam
(with x ¼ x=L1 ¼ 1), respectively, as one may see from Fig. 1(b). Therefore, the solutions of Eqs.
(3a) and (3b) take the forms [22,23,27]

W ðxÞ ¼ L�1
1 x�1½c1J2ðzÞ þ c2Y 2ðzÞ þ c3I2ðzÞ þ c4K2ðzÞ
 for L0pxpLw; (7a)

~W ðxÞ ¼ L�1
1 x�1½~c1J2ð~zÞ þ ~c2Y 2ð~zÞ þ ~c3I2ð~zÞ þ ~c4K2ð~zÞ
 for LwpxpL1; (7b)
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where

z ¼ 2bx1=2; ~z ¼ 2 ~bx1=2 (8a,b)

with

b4 ¼ o2L41
rA1

EI1

� �
; ~b

4
¼ o2L41

ðrþ C0
m ~rÞA1

EI1

� �
: (9a,b)

In Eqs. (7a) and (7b), J2 and Y 2 are the second-order Bessel functions of first and second kind,
respectively, I2 and K2 are the second-order modified Bessel functions of first and second kind,
respectively, while ci and ~ci (i ¼ 1�4) are the integration constants determined by the following
boundary conditions:

EIðxÞW 00ðxÞ ¼ mteo2W ðxÞ � ðJt þ mte
2Þo2W 0ðxÞ at x ¼ x0 ¼ L0=L1; (10a)

d

L1dx
½EIðxÞW 00ðxÞ
 ¼ mto2W ðxÞ � mteo2W 0ðxÞ at x ¼ x0 ¼ L0=L1; (10b)

W ðxÞ ¼ ~W ðxÞ; W 0ðxÞ ¼ ~W
0
ðxÞ; W 00ðxÞ ¼ ~W

00
ðxÞ; W 000ðxÞ ¼ ~W

000
ðxÞ

at x ¼ xw ¼ Lw=L1; ð11a2dÞ

�EIðxÞ ~W
00
ðxÞ ¼ kR

~W
0
ðxÞ at x ¼ x1 ¼ L1=L1 ¼ 1; (12a)

d

L1dx
½EIðxÞ ~W

00
ðxÞ
 ¼ kT

~W ðxÞ and x ¼ x1 ¼ L1=L1 ¼ 1; (12b)

where

W 0ðxÞ ¼ dW ðxÞ=dx and ~W 0ðxÞ ¼ d ~W ðxÞ=dx:

Among the last eight equations, Eqs. (10a) and (10b) assure the equilibrium of bending moment
and shear force at the top end of the tapered beam ((located at x ¼ x0 ¼ L0=L1; as one may see
from Fig. 1(a)), Eqs. (11a)–(11d) assure the compatibility of displacement and slope together with
the moment equilibrium and force equilibrium at the junction of the emerged part and immersed
part of the tapered beam (located at free water surface with x ¼ xw ¼ Lw=L1), while Eqs. (12a)
and (12b) assure the equilibrium of bending moment and shear force at the lower end of the
tapered beam (located at x ¼ x1 ¼ L1=L1 ¼ 1:0). It is noted that, in Eqs. (10a) and (10b), the
symbols mt and Jt denote the mass and mass moment of inertia for the lumped mass at the top
end of the tapered beam (see Fig. 1(a)), respectively, and e denotes the eccentricity of the lumped
mass mt: Besides, the symbols kR and kT appearing in Eqs. (12a) and (12b) denote the spring
constants for the rotational and translational (helical) springs at the lower end of the tapered
beam, respectively, as one may see from Fig. 1(a).



ARTICLE IN PRESS

J.-S. Wu, C.-T. Chen / Journal of Sound and Vibration 286 (2005) 549–568554
Substituting Eq. (7a) into Eqs. (10a) and (10b), one obtains

B11c1 þ B12c2 þ B13c3 þ B14c4 ¼ 0; (13a)

B21c1 þ B22c2 þ B23c3 þ B24c4 ¼ 0; (13b)

where

B11 ¼ a2J2ðz0Þ þ a3J3ðz0Þ � a4J4ðz0Þ;

B12 ¼ a2Y 2ðz0Þ þ a3Y 3ðz0Þ � a4Y 4ðz0Þ;

B13 ¼ a2I2ðz0Þ � a3I3ðz0Þ � a4I4ðz0Þ;

B14 ¼ a2K2ðz0Þ þ a3K3ðz0Þ � a4K4ðz0Þ; ð14aÞ

B21 ¼ b2J2ðz0Þ þ b3J3ðz0Þ � b4J4ðz0Þ þ b5J5ðz0Þ;

B22 ¼ b2Y 2ðz0Þ þ b3Y 3ðz0Þ � b4Y 4ðz0Þ þ b5Y 5ðz0Þ;

B23 ¼ b2I2ðz0Þ � b3I3ðz0Þ � b4I4ðz0Þ � b5I5ðz0Þ;

B24 ¼ b2K2ðz0Þ þ b3K3ðz0Þ � b4K4ðz0Þ þ b5K5ðz0Þ; ð14bÞ

with

a2 ¼ mteo2L
�2=2
1 x�2=20 ; a3 ¼ ðJt þ mte

2Þo2bL
�4=2
1 x�3=20 ; a4 ¼ EI0b

2L
�6=2
1 x�4=20 ; (15)

b2 ¼ mto2L
�2=2
1 x�2=20 ; b3 ¼ mteo2bL

�4=2
1 x�3=20 ;

b4 ¼ EI 00b
2L

�6=2
1 x�4=20 ; b5 ¼ EI0b

3L
�8=2
1 x�5=20 ; ð16Þ

I0 ¼ I1x
4
0; (17)

I 00 ¼ 4x
3
0I1=L1; (18)

z0 ¼ 2bx
1=2
0 : (19)

Similarly, inserting Eqs. (7a) and (7b) into Eqs. (11a)–(11d) leads to

B31c1 þ B32c2 þ B33c3 þ B34c4 þ B35 ~c1 þ B36 ~c2 þ B37 ~c3 þ B38 ~c4 ¼ 0; (20a)

B41c1 þ B42c2 þ B43c3 þ B44c4 þ B45 ~c1 þ B46 ~c2 þ B47 ~c3 þ B48 ~c4 ¼ 0; (20b)

B51c1 þ B52c2 þ B53c3 þ B54c4 þ B55 ~c1 þ B56 ~c2 þ B57 ~c3 þ B58 ~c4 ¼ 0; (20c)

B61c1 þ B62c2 þ B63c3 þ B64c4 þ B65 ~c1 þ B66 ~c2 þ B67 ~c3 þ B68 ~c4 ¼ 0; (20d)

where

B31 ¼ J2ðzwÞ; B32 ¼ Y 2ðzwÞ; B33 ¼ I2ðzwÞ; B34 ¼ K2ðzwÞ;

B35 ¼ �J2ð~zwÞ; B36 ¼ �Y 2ð~zwÞ; B37 ¼ �I2ð~zwÞ; B38 ¼ �K2ð~zwÞ; ð21aÞ

B41 ¼ bJ3ðzwÞ; B42 ¼ bY 3ðzwÞ; B43 ¼ �bI3ðzwÞ; B44 ¼ bK3ðzwÞ;

B45 ¼ � ~bJ3ð~zwÞ; B46 ¼ � ~bY 3ð~zwÞ; B47 ¼ ~bI3ð~zwÞ; B48 ¼ � ~bK3ð~zwÞ; ð21bÞ
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B51 ¼ b2J4ðzwÞ; B52 ¼ b2Y 4ðzwÞ; B53 ¼ b2I4ðzwÞ; B54 ¼ b2K4ðzwÞ;

B55 ¼ � ~b
2
J4ð~zwÞ; B56 ¼ � ~b

2
Y 4ð~zwÞ; B57 ¼ � ~b

2
I4ð~zwÞ; B58 ¼ � ~b

2
K4ð~zwÞ; ð21cÞ

B61 ¼ b3J5ðzwÞ; B62 ¼ b3Y 5ðzwÞ; B63 ¼ �b3I5ðzwÞ; B64 ¼ b3K5ðzwÞ;

B65 ¼ � ~b
3
J5ð~zwÞ; B66 ¼ � ~b

3
Y 5ð~zwÞ; B67 ¼ ~b

3
I5ð~zwÞ; B68 ¼ � ~b

3
K5ð~zwÞ; ð21dÞ

with

zw ¼ 2bx1=2w ; (22)

~zw ¼ 2 ~bx1=2w : (23)

When Eq. (7b) is substituted into the two boundary equations given by Eqs. (12a) and (12b),
one obtains

B75 ~c1 þ B76 ~c2 þ B77 ~c2 þ B78 ~c4 ¼ 0; (24)

B85 ~c1 þ B86 ~c2 þ B87 ~c3 þ B88 ~c4 ¼ 0; (25)

where

B75 ¼ d3J3ð~z1Þ � d4J4ð~z1Þ; B76 ¼ d3Y 3ð~z1Þ � d4Y 4ð~z1Þ;

B77 ¼ �d3I3ð~z1Þ � d4I4ð~z1Þ; B78 ¼ d3K3ð~z1Þ � d4K4ð~z1Þ; ð26aÞ

B85 ¼ e2J2ð~z1Þ � e4J4ð~z1Þ þ e5J5ð~z1Þ; B86 ¼ e2Y 2ð~z1Þ � e4Y 4ð~z1Þ þ e5Y 5ð~z1Þ;

B87 ¼ e2I2ð~z1Þ � e4I4ð~z1Þ � e5I5ð~z1Þ; B88 ¼ e2K2ð~z1Þ � e4K4ð~z1Þ þ e5K5ð~z1Þ; ð26bÞ

with

d3 ¼ kR
~bL

�4=2
1 x�3=21 ; d4 ¼ EI1 ~b

2
L
�6=2
1 x�4=21 ; (27)

e2 ¼ kT L
�2=2
1 x�2=21 ; e4 ¼ EI 01

~b
2
L
�6=2
1 x�4=21 ; e5 ¼ EI1 ~b

3
L
�8=2
1 x�5=21 ; (28)

~z1 ¼ 2 ~bx
1=2
1 ¼ 2 ~b; (29)

I 01 ¼ 4I1=L1: (30)

The foregoing eight equations, (13a), (13b), (20a)–(20d), (25a) and (25b), constitute a set of
simultaneous equations for the eight integration constants, ci and ~ci ði ¼ 124Þ: Non-trivial
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solution for the last simultaneous equations requires that their coefficient determinant is equal to
zero, i.e.,

DðoÞ ¼

B11 B12

B21 B22

B13 B14

B23 B24

0 0

0 0

0 0

0 0

B31 B32

B41 B42

B33 B34

B43 B44

B35 B36

B45 B46

B37 B38

B47 B48

B51 B52

B61 B62

B53 B54

B63 B64

B55 B56

B65 B66

B57 B58

B67 B68

0 0

0 0

0 0

0 0

B75 B76

B85 B86

B77 B78

B87 B88

��������������������

��������������������

¼ 0: (31)

If the lower (larger) end of the tapered beam is clamped (or fixed), the boundary conditions
given by Eqs. (12a) and (12b) must be replaced by (cf. Fig. 1(a))

~W ðxÞ ¼
d ~W ðxÞ
L1dx

¼ 0 at x ¼ x1 ¼ 1: (32a,b)

In such a case, all the foregoing formulations are valid if the coefficients B7i and B8i ði ¼ 528Þ
appearing in Eqs. (25), (26) and (31) are replaced by

B75 ¼ J2ð~z1Þ; B76 ¼ Y 2ð~z1Þ; B77 ¼ I2ð~z1Þ; B78 ¼ K2ð~z1Þ;

B85 ¼ J3ð~z1Þ; B86 ¼ Y 3ð~z1Þ; B87 ¼ �I3ð~z1Þ; B88 ¼ K3ð~z1Þ: ð33Þ

Eq. (31) is the frequency equation and is solved for the natural frequencies or (r ¼ 1; 2; :::) of the
immersed tapered beam by using the half-interval method [28] in this paper. Corresponding to
each natural frequency or; one may obtain a set of integration constants, ci and ~ci ði ¼ 124Þ; from
the above-mentioned simultaneous equations. Substituting these constants into Eqs. (7a) and (7b)
will determine the associated rth emerged-part and immersed-part mode shapes, W ðrÞðxÞ and
~W
ðrÞ
ðxÞ; respectively. The combination of W ðrÞðxÞ and ~W

ðrÞ
ðxÞ gives the rth mode shape of the

entire immersed tapered beam.
If the taper ratios for the variations of width and depth of the beam are defined by (see Figs.

1(a) and (b))

ab ¼ b1=L1 ¼ b0=L0 and ah ¼ h1=L1 ¼ h0=L0; (34a,b)

then, for a complete tapered beam with length L1; the taper ratios ab and ah (or the maximum
width b1 and maximum depth h1) may take any values and Eqs. (6) and (7) are always satisfied. In
other words, the formulation of this paper is available for the doubly tapered beams with the
square, rectangular or circular cross-sections. For example, if the cross-sections of the doubly
tapered beam are circular with diameter d1 at the larger end (see Fig. 1(c)), then one only requires
to replace the values of A1 and I1 given by Eqs. (4a) and (4b) by the following ones; the foregoing
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formulations are still available:

A1 ¼ pd21=4 and I1 ¼ pd21=64: (35a,b)

In Ref. [10], the taper ratios for the width and depth of a tapered beam are defined by b1=b0 and
h1=h0; respectively. It is believed that the more significant definitions for the taper ratios should be
the ratios between the characteristic length for the transverse dimension and that for the
longitudinal (or axial) dimension, such as those given by Eq. (34), rather than the ratios between
the transverse dimensions of a tapered beam only.
3. The finite element model for the immersed wedge beam

To confirm the reliability of the above formulations, the exact values of natural frequencies and
the corresponding mode shapes are checked by the numerical results obtained from the
conventional FEM. The mathematical model for the FEM is shown in Fig. 2, where the whole
tapered beam is replaced by an equivalent stepped beam composed of Ne uniform beam elements
bounded by Ne þ 1 nodes. Besides, the added mass for the immersed part of the wedge beam is
also replaced by a number of point masses, as shown by the symbol � appearing in Fig. 2. The last
point added masses are attached to the nodes of the associated uniform beam elements. For the
details about the calculation of point added masses, one may refer to Ref. [22].
4. Numerical results and discussions

The formulation of this paper is available for the tapered beams with either square or circular
cross-sections. Because the dynamic behaviours of the square tapered beams are similar to those
of the circular ones, only the square tapered beams are studied in this section. Except the first
2

eN

(b) x

z

Rk Tk

wLLd −= 1

1

3

1+eN

y1λ

L

(a) x

e tJtm

Rk

Tk

Fig. 2. The discrete finite element model for the immersed wedge beam: (a) front view and (b) right side view. (The

digits in (b) denote the node numberings.)
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example for comparing with the existing literature [10], the dimensions for all the square tapered
beams are as follows (cf. Fig. 1): distance from origin 0 to the larger end is L1 ¼ 33 m; that to the
smaller end is L0 ¼ 11 m; the width and depth for the cross-section at the larger end are b1 ¼
L1 ¼ 3:3 m; those at the smaller end are b0 ¼ L0 ¼ 1:1 m: According to the definitions of this
paper given by Eq. (34), one has the taper ratios ab ¼ ah ¼ h1=L1 ¼ h0=L0 ¼ 0:1: The physical
properties of the beam material are: Young’s modulus E ¼ 2:068� 1011 N=m2 and mass density
r ¼ 7850 kg=m3: For convenience, the added mass coefficient is assumed to be C0

m ¼ 1:0:

4.1. Reliability of the theory and the computer programs (for water depth d ¼ 0)

In order to compare the results of this paper with those of Ref. [10], the dimensions of the
square tapered beam for the present first example are selected the same as those for the other
examples, except that the distance from origin 0 to the smaller end is L0 ¼ 30 m instead of
L0 ¼ 11 m: In such a case, the width and depth for the cross-section at the smaller end are given
by b0 ¼ h0 ¼ 3:0 m: Therefore, according to the definition in Ref. [10], the ratio of h1=h0 ¼
3:3=3 ¼ 1:1 is equal to the taper ratios for the tapered beam of Table 4 in Ref. [10]. From the
foregoing given data for the present example 1, one obtains: cross-sectional area of the larger end
A1 ¼ b1h1 ¼ 10:89 m2; that of the smaller end A0 ¼ b0h0 ¼ 9 m

2; moment of inertia for the cross-
sectional area at the larger end I1 ¼ b1h

3
1=12 ¼ 9:882675 m

4; that at the smaller end I0 ¼
b0h

3
0

�
12 ¼ 6:75 m4; the total mass of the tapered beam mb ¼ rðA1L1 � A0L0Þ=3 ¼ 2:338515�

105 kg; and the total length of the ‘‘truncated’’ wedge beam L ¼ L1 � L0 ¼ 3 m: Based on the
above physical quantities, the spring constant of the translational (helical) spring kT ¼

ðEI1
�

L3Þ
�

CT ¼ 7:569397� 1010=CT and that of the rotational spring kR ¼ ðEI1=LÞ
�

CR ¼

6:8124573� 1011=CR to agree with the ‘‘conditions’’ given by Table 4 of Ref. [10] are listed in
Table 1, where CT and CR are the soil stiffness ratios defined by CT ¼ EI1=ðkT L3Þ and CR ¼

EI1=ðkRLÞ; respectively [10].
For the case of magnitude of lumped mass mt ¼ mb ¼ 2:338515� 105 kg and mass moment of

inertia Jt ¼ mt ð0:6LÞ
2
¼ 7:5767886� 105 kg m2 with eccentricity e ¼ 0:4L ¼ 1:2 m; together with
Table 1

The magnitudes of spring constants of kT and kR for the combinations of CT ¼ EI1=ðkT L3Þ and CR ¼ EI1=ðkRLÞ being

equal to 0.0, 0.1, 1.0 and 10.0

CT CR kT (N/m) kR (Nm)

0 (fixed supported) 0.1 N 6.8124573� 1012

1.0 6.8124573� 1011

10 6.8124573� 1010

0.1 (elastically supported) 0.1 7.569397� 1011 6.8124573� 1012

1.0 6.8124573� 1011

10 6.8124573� 1010

1.0 (elastically supported) 0.1 7.569397� 1010 6.8124573� 1012

1.0 6.8124573� 1011

10 6.8124573� 1010

Note: kT ¼ 7.569397� 1010/CTN/m, kR ¼ 6.8124573� 1011/CRNm.
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Table 2

The lowest five frequency coefficients b̄r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
or
2L4rA0=ðEI0Þ

4
p

obtained from the present paper and Ref. [10] with

e ¼ 0:4L; h1=h0 ¼ 1:1; mt ¼ mb; Jt ¼ mtð0:6LÞ
2; kT ¼ 7:569397� 1010=CT N=m; kR ¼ 6:8124573� 1011=CRNm and

water depth d ¼ 0

CT CR Methods
Frequency coefficients, b̄r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2r L4rA0=ðEI0Þ

4
q

b̄1 b̄2 b̄3 b̄4 b̄5

0.0 0.0 FEM 0.97201 2.28952 5.13362 8.22043 11.38786
aApproximate 0.97201 2.28952 5.13507 8.23629 11.43806

Exact 0.97201 2.28951 5.13362 8.22043 11.38786

Ref. [10] 0.97201 2.28951 5.13362 — —

0.1 FEM 0.93456 2.18259 4.83462 7.81147 10.90524

Approximate 0.93456 2.18258 4.83504 7.81497 10.91325

Ref. [10] 0.93456 2.18258 4.83459 — —

1.0 FEM 0.75524 1.94887 4.45433 7.48491 10.62827

Approximate 0.75524 1.94886 4.45430 7.48491 10.62828

Ref. [10] 0.75524 1.94886 4.45428 — —

10 FEM 0.46743 1.85437 4.35816 7.42446 10.58453

Approximate 0.46743 1.85436 4.35811 7.42436 10.58438

Ref. [10] 0.46743 1.85436 4.35811 — —

0.1 0.1 FEM 0.92059 1.76180 3.11806 5.69952 8.71937

Exact 0.92059 1.76179 3.11803 5.69905 8.71564

Ref. [10] 0.92060 1.76179 3.11803 — —

1.0 FEM 0.74960 1.71407 3.01056 5.30878 8.32336

Exact 0.74961 1.71407 3.01054 5.30851 8.32185

Ref. [10] 0.74961 1.71407 3.01053 — —

10 FEM 0.46688 1.68719 2.95723 5.16726 8.22105

Exact 0.46688 1.68718 2.95721 5.16718 8.22097

Ref. [10] 0.46688 1.68718 2.95720 — —

1.0 0.1 FEM 0.80146 1.23842 2.89130 5.66064 8.70733

Exact 0.80146 1.23842 2.89127 5.66021 8.70367

Ref. [10] 0.80146 1.23842 2.89127 — —

1.0 FEM 0.70085 1.19769 2.63422 5.23965 8.30528

Exact 0.70085 1.19769 2.63419 5.23937 8.30378

Ref. [10] 0.70085 1.19769 2.63419 — —

10 FEM 0.46189 1.16527 2.48055 5.08750 8.20185

Exact 0.46189 1.16527 2.48052 5.08740 8.20175

Ref. [10] 0.46189 1.16527 2.48052 — —

aThe ‘‘approximate’’ values are based on the elastically supported beam with CT ¼ CR ¼ 10�15(or kT ¼ 7:569397�
1025 N=m and kR ¼ 6:8124573� 1026 N m).

J.-S. Wu, C.-T. Chen / Journal of Sound and Vibration 286 (2005) 549–568 559
the various combinations of the spring constants of kT and kR shown in Table 1, the lowest five

natural frequency coefficients, b̄r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
or
2L4rA0=ðEI0Þ

4
p

are listed in Table 2 in which the ‘‘exact’’

values refer to the analytical solutions based on the formulations of this paper and the ‘‘FEM’’
values refer to the finite element solutions based on the mathematical model shown in Fig. 2 with
the total number of beam elements Ne ¼ 50: From Table 2, one sees that the exact values of this
paper are equal to the corresponding ones of Ref. [10] exactly with very few exceptions, and the
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FEM results are also very close to the corresponding exact ones. Therefore, both the analytical
theory and the FEM computer programs presented for this paper should be reliable.
In Ref. [10], the stiffness ratios CT ¼ EI1=ðkT L3Þ ¼ 0 and CR ¼ EI1=ðkRLÞ ¼ 0 refer

to the supported condition that the lower end of the wedge beam is clamped (or fixed). To
study the possibility of obtaining the natural frequencies of a wedge with its lower end fixed
supported from the presented closed-form solutions based on the same wedge beam with its lower
end elastically supported, we set CT ¼ CR ¼ 10�15 (or kT ¼ 7:569397� 1025 N=m and
kR ¼ 6:8124573� 1026 N m) for the elastically supported beam and obtained the ‘‘approximate’’
values as shown in lines 4, 8, 11 and 14 of Table 2. It is evident that all the values of b̄r ðr ¼ 125Þ;
based on CT ¼ CR ¼ 10�15; obtained either from FEM results or the ‘‘approximate’’ results, are
very close to the ‘‘exact’’ values of the wedge beam with its lower end fixed (i.e., based on
CT ¼ CR ¼ 0).
It is noted that: (i) most of the symbols in this paper are different from those in Ref. [10], e.g.,

the symbols A0; I0; A1 and I1 in this paper are corresponding to A1; I1; A2 and I2 in Ref. [10],
respectively; (ii) the definitions for the taper ratio of width, ab; and that of depth, ah; in this paper
are also different from those of Ref. [10]; (iii) most of the parameters are ‘‘dimensional’’ in this
paper, but all parameters in Ref. [10] are ‘‘non-dimensional’’; (iv) the formulation of this paper is
available for the cases of ab ¼ ah and abaah; but this is true only for the case of ab ¼ ah in Ref.
[10]. It is believed that carefully reading both this paper and Ref. [10] will be helpful for the
readers to understand the statements of this subsection.

4.2. Influence of water depth on the natural frequencies of a fixed supported tower

In order to satisfy the ‘‘conditions’’ of Table 4 in Ref. [10], the length of the truncated wedge
beam studied in the above example 1 is selected to be L ¼ 3m; however, this is too short for a
practical off-shore tower. Therefore, the length of the wedge beam in the subsequent subsections is
assumed to be L ¼ 22m; which is obtained from the above complete wedge beam with one-third
of its total length at the smaller end being truncated. In other words, the dimensions for the
current ‘‘truncated’’ wedge beam are those having been mentioned at the beginning of this section:
b0 ¼ h0 ¼ 1:1 m; b1 ¼ h1 ¼ 3:3 m; A0 ¼ b0h0 ¼ 1:21 m2; A1 ¼ b1h1 ¼ 10:89 m2; L0 ¼ 11 m; and
L1 ¼ 33 m: Thus, for this wedge beam, one has its length L ¼ L1 � L0 ¼ 22 m; its total mass
mb ¼ rðA1L1 � A0L0Þ=3 ¼ 9:05523667� 10

5 kg and its taper ratios ab ¼ ah ¼ h1=L1 ¼ h0=L0 ¼

0:1: It is evident that, for the current wedge beam, the ratio of h1=h0 ð¼ b1=b0Þ is equal to 3 rather
than 1.1 for the wedge beam of Ref. [10].
The influence of water depths (d ¼ L1 � Lw ¼ 22; 20, 15, 10, 5 and 0m) on the lowest five

natural frequencies of the last wedge beam with its lower (larger) end ‘‘fixed supported’’, i.e., with
stiffness ratios CT ¼ CR ¼ 0; is shown in Table 3, in which the magnitude of tip mass (mt) and its
mass moment of inertia (Jt) along with its eccentricity (e) are assumed to be: mt ¼ mb ¼

9:05523667� 10�5kg; Jt ¼ mt ð0:05LÞ
2
¼ 1:09568364� 106 kg m2 and e ¼ 0.05L ¼ 1.1m. From

Table 3, one finds that: (i) the natural frequency of the tower decreases with increasing the water
depth (d) due to its added mass to increase with the increase in its immersion; (ii) the influence of
water depth on the ðr þ 1Þth natural frequency orþ1 is larger than that on the rth one or (r ¼ 1�5)
as one may see from Fig. 3, too; (iii) all the lowest five natural frequencies obtained from the
FEM, or;FEM; are very close to the corresponding exact ones, or;exact; with the trend that
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Table 3

Influence of water depths ðdÞ on the lowest five natural frequencies of the ‘‘fixed supported’’ tower with e ¼ 0:05L ¼

1:1m; mt ¼ mb ¼ 9:05523667� 105kg; and Jt ¼ mtð0:05LÞ
2
¼ 1:09568364� 106 kgm2

Water depths d (m) Methods Natural frequencies, or (rad/s)

o1 o2 o3 o4 o5

22 Exact 12.4457 84.8899 185.0669 395.0587 737.8604

FEM 12.4452 84.8902 185.0964 395.1019 737.9203

20 Exact 12.4567 85.0232 185.3632 395.1301 738.5435

FEM 12.4562 85.0234 185.3924 395.1741 738.6071

15 Exact 12.4738 86.3455 185.7314 403.1445 753.1635

FEM 12.4732 86.3456 185.7614 403.1805 753.2254

10 Exact 12.4794 87.6808 188.8452 406.0575 765.2312

FEM 12.4788 87.6814 188.8737 406.1017 765.2858

5 Exact 12.4803 88.0644 191.3257 414.7813 774.5528

FEM 12.4797 88.0655 191.3559 414.8214 774.6075

0 Exact 12.4803 88.0823 191.5053 416.4709 781.4470

FEM 12.4798 88.0834 191.5361 416.5149 781.5096
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or;FEM4or;exact for r ¼ 2�4 and o1;FEMoo1;exact: The total number of beam elements for the
FEM throughout this paper is Ne ¼ 110; except in the last subsection (with Ne ¼ 50).
It is noted that one of the main differences between the mathematical model for the exact

method (cf. Fig. 1) and that for the FEM (cf. Fig. 2) is that the added mass for the former is
distributed, but the last added mass is replaced by a number of concentrated masses for the latter.
For this reason, the magnitude of each concentrated (lumped) mass and its relative position to the
adjacent node for a specified mode shape will affect the associated approximate natural frequency
and this is not true for the exact one. For example, for a beam carrying a number of point (added)
masses, if the ith point mass is coincident with one of the nodes of the rth mode shape, then the
contribution of the ith point mass on the rth natural frequency or;FEM is nil. However, this is not
true for the corresponding exact value or;exact: In other words, in addition to the total number of
beam elements (Ne) for FEM, the approximate natural frequencies or;FEM are also dependent
upon the water depth (d) and the supporting conditions at the lower (larger) end of the wedge
tower (reflected by the soil stiffness ratios CT and CR). The last phenomenon will be the reason
why the trend for the difference between the approximate frequencies or;FEM and their
corresponding exact ones or;exact; i.e., or;FEM � or;exact (r ¼ 1� 5), for one specified case of water
depth and supporting condition, is slightly different from that for the other case, as one may see
from Table 4.

4.3. Influence of water depths on the natural frequencies of an elastically supported tower

For convenience, one assumes that the lower (larger) end of the off-shore tower is fixed, i.e., the
soil stiffness ratios CT ¼ CR ¼ 0 or the spring constants kT ¼ kR ¼ 1: It is obvious that the last
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(e)

Fig. 3. Influence of water depths (d) on the lowest five natural frequencies of the tower with CT ¼ CR ¼ 0 (———),

CT ¼ CR ¼ 0:1 (— �— � ), CT ¼ CR ¼ 1 (– – – –) and CT ¼ CR ¼ 10 ð� � � � � �Þ for: (a) first natural frequencies o1; (b)
second ones o2; (c) third ones o3; (d) fourth ones o4; and (e) fifth ones o5:

J.-S. Wu, C.-T. Chen / Journal of Sound and Vibration 286 (2005) 549–568562
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Table 4

Influence of soil stiffness (kT and kR) and water depths (d) on the lowest five natural frequencies of the ‘‘elastically

supported’’ tower with e¼ 0:05L¼ 1:1 m;mt¼ mb¼ 9:05523667� 10
5 kg; Jt¼ mtð0:05LÞ

2
¼ 1:09568364� 106 kg m2;

kT ¼ 1:9193625� 108=CT N=m and kR ¼ 9:2897145� 1010=CR N m

Soil stiffness ratios CT ¼ CR Water depths d (m) Methods Natural frequencies, or (rad/s)

o1 o2 o3 o4 o5

0.1 22 Exact 11.4201 46.5066 102.3399 207.9419 434.1806

FEM 11.4197 46.5064 102.3459 207.9786 434.2363

20 Exact 11.4308 46.5136 102.5263 208.1897 434.2647

FEM 11.4303 46.5134 102.5322 208.2261 434.3214

15 Exact 11.4504 46.6960 103.7383 208.8647 443.5467

FEM 11.4500 46.6958 103.7443 208.9012 443.5953

10 Exact 11.4605 47.2215 104.2048 212.6433 446.5189

FEM 11.4601 47.2213 104.2116 212.6789 446.5753

5 Exact 11.4650 48.0486 104.4197 213.5970 453.7144

FEM 11.4646 48.0483 104.4266 213.6347 453.7694

0 Exact 11.4672 49.1200 105.9650 216.1269 458.2526

FEM 11.4668 49.1198 105.9723 216.1649 458.3117

1.0 22 Exact 6.9926 21.2598 79.1488 176.4985 383.1250

FEM 6.9926 21.2597 79.1500 176.5313 383.1786

20 Exact 6.9995 21.2603 79.2444 176.8203 383.1962

FEM 6.9994 21.2602 79.2456 176.8527 383.2505

15 Exact 7.0196 21.2761 80.2501 177.1460 390.9217

FEM 7.0195 21.2760 80.2511 177.1796 390.9688

10 Exact 7.0419 21.3871 81.1597 179.2018 393.9402

FEM 7.0418 21.3870 81.1611 179.2345 393.9953

5 Exact 7.0647 21.6949 81.2716 180.5633 399.8270

FEM 7.0646 21.6948 81.2733 180.5973 399.8790

0 Exact 7.0867 22.3240 82.4200 182.1954 403.6957

FEM 7.0866 22.3239 82.4221 182.2311 403.7562

10 22 Exact 2.5264 9.1364 62.0460 164.2166 367.5604

FEM 2.5265 9.1365 62.0450 164.2473 367.6134

20 Exact 2.5288 9.1377 62.0925 164.5731 367.6344

FEM 2.5288 9.1378 62.0916 164.6035 367.6880

15 Exact 2.5372 9.1385 62.8047 164.9821 374.9347

FEM 2.5373 9.1387 62.8036 165.0137 374.9814

10 Exact 2.5488 9.1568 63.7514 166.3235 378.2305

FEM 2.5488 9.1569 63.7504 166.3545 378.2849

5 Exact 2.5625 9.2536 63.9723 167.6966 383.4887

FEM 2.5626 9.2537 63.9715 167.7285 383.5400

0 Exact 2.5771 9.5608 64.7297 168.8512 386.9874

FEM 2.5772 9.5609 64.7294 168.8851 387.0478
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assumption may be different from the actual situation to some degree. For this reason, this paper uses
the translational (helical) spring constant kT to model the sliding stiffness and the rotational spring
constant kR to model the rocking stiffness between the tower and the seabed. If the physical properties
for the tip mass and the supporting springs are assumed to be mt ¼ mb ¼ 9:05523667� 105 kg;
Jt¼ mt ð0:05LÞ

2
¼ 1:09568364� 106 kg m2; e¼ 0:05L¼ 1:1 m; kT ¼ 1:9193625� 108=CT N=m
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and kR¼ 9:2897145� 10
10=CR Nm; then the influence of soil stiffness ratios (CT ¼ EI1=ðkT L3Þ

and CR ¼ EI1=ðkRLÞ) and water depths (d) on the lowest five natural frequencies of the
‘‘elastically supported’’ tower is shown in Table 4, where the soil stiff-
ness ratios are CT ¼ CR ¼ 0:1; 1.0 and 10.0, while the water depths are d ¼ L1 � Lw ¼ 22;
20, 15, 10, 5 and 0m. It is noted that water depth d ¼ 0 means the tower being on land
and is called the ‘‘dry’’ tower, while da0 means the tower being partially or fully immer-
sed in water and is called the ‘‘wet’’ tower in this paper. From Table 4, one sees that
all conclusions drawn from the last subsection for Table 3 are available for Table 4.
It is reasonable that all the natural frequencies shown in Table 4 are smaller than the
corresponding ones shown in Table 3 and the lowest five natural frequencies of the elastically
supported tower decrease with increasing the soil stiffness ratios (CT and CR) or decreasing the
spring constants (kT and kR).
For clearness, the influence of water depths (d) and soil stiffness ratios (CT and CR)

on the lowest five natural frequencies of the tower shown in Tables 3 and 4 is further
plotted in Fig. 3, where the curves, ———, — �— �—, – – – – and � � � � � � ; represent the
cases of CT ¼ CR ¼ 0; CT ¼ CR ¼ 0:1; CT ¼ CR ¼ 1 and CT ¼ CR ¼ 10; respectively, and
Figs. 3(a)–(e) are for the first natural frequencies (o1), second ones (o2), third ones (o3),
fourth ones (o4) and fifth ones (o5), respectively. From Fig. 3, one sees that the influence
of water depths on the first natural frequencies is negligible no matter whether CT ¼ CR ¼ 0; 0.1,
1.0 or 10, particularly for the fixed supported tower (with CT ¼ CR ¼ 0). However,
the last phenomenon is not true for the other natural frequencies or (r ¼ 2� 5). It is also
found that the natural frequencies for the fixed supported tower (with CT ¼ CR ¼ 0)
and the corresponding ones for the elastically supported tower with CT ¼ CR ¼ 0:1
are close to each other for the first mode o1 and are much divergent for the other
modes or (r ¼ 2� 5).

4.4. The lowest five mode shapes of the fixed and elastically supported towers

The lowest five mode shapes corresponding to some of the lowest five natural fre-
quencies shown in Tables 3 and 4 are shown in Figs. 4 and 5, among which Fig. 4 shows
the lowest five mode shapes of the fully immersed tower (d ¼ L ¼ 22m) obtained from
exact solutions (represented by the solid curves ———) and those from the FEM (represented
by the dashed curves – – – –), with Fig. 4(a) for the fixed supported tower (CT ¼ CR ¼ 0) and
Fig. 4(b) for the elastically supported one (CT ¼ CR ¼ 10). The abscissa of each figure de-
notes the normalized modal displacements W̄

ðrÞ
ð ~xÞ and the ordinate denotes the axial co-

ordinates with origin located at the lower (larger) end of the tower defined by ~x ¼ L1 � x;
where L1 is the total length of the complete wedge beam and x is the coordinate with origin
at the tip end of the complete wedge beam (cf. Fig. 1). Either in Fig. 4 or Fig. 5, the curves
with symbols J (or �), + (or � ), D (or m), & (or ’) and $ (or %) denote the 1st, 2nd,
3rd, 4th and 5th mode shapes, respectively. From Figs. 4(a) and (b), one sees that the solid
curves and the dashed ones overlap each other. This is as per one’s expectation, because
the associated natural frequencies obtained from the exact solution and those from the
FEM are very close to each other as one may see from Tables 3 and 4. From Fig. 4(b),
one sees that the 1st mode vibration is near a rigid-body mode with a combination of sliding



ARTICLE IN PRESS

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalized modal displacements, W (x)
_ (r) Normalized modal displacements, W (x)(r)

1st mode (Exact)

2nd mode (Exact)

3rd mode (Exact)

4th mode (Exact)

5th mode (Exact)

1st mode (FEM)

2nd mode (FEM)

3rd mode (FEM)

4th mode (FEM)

5th mode (FEM)

1st mode (Exact)

2nd mode (Exact)

3rd mode (Exact)

4th mode (Exact)

5th mode (Exact)

1st mode (FEM)

2nd mode (FEM)

3rd mode (FEM)

4th mode (FEM)

5th mode (FEM)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

14

16

18

20

22

)

A
xi

al
 c

oo
rd

in
at

es
 w

ith
 o

ri
gi

n 
at

 th
e 

lo
w

er
 (

la
rg

er
) 

en
d 

of
 th

e 
to

w
er

, x
 (

m
)

~

0

2

4

6

8

10

12

14

16

18

20

22

A
xi

al
 c

oo
rd

in
at

es
 w

ith
 o

ri
gi

n 
at

 th
e 

lo
w

er
 (

la
rg

er
) 

en
d 

of
 th

e 
to

w
er

, x
 (

m
)

~

~~ (b)(a)

Fig. 4. The lowest five mode shapes of the fully immersed tower (d ¼ L ¼ 22m) obtained from exact solutions (———)

and from FEM (– – – –): (a) fixed supported (CT ¼ CR ¼ 0); (b) elastically supported (CT ¼ CR ¼ 10).
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and rocking motions of the elastically supported tower. The 2nd mode shape is similar to the 1st
one, but the component due to the elastic deformation is slightly larger.
Fig. 5(a) shows the influence of added mass on the lowest five mode shapes of the fixed

supported tower (with CT ¼ CR ¼ 0) and Fig. 5(b) shows that of the elastically supported one
(with CT ¼ CR ¼ 10) obtained from the exact solutions, in which the solid curves (———) denote
the mode shapes of the wet beam (with d ¼ L ¼ 22m) and the dashed curves (– – – –) denote
those of the dry beam (with d ¼ 0). Not much differences between the solid curves and the dashed
ones in Fig. 5 reveal that the mode shapes of the wet beam are very close to the corresponding
ones of its dry beam.
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Fig. 5. The lowest five mode shapes of the tower obtained from the exact solutions for (a) fixed supported

(CT ¼ CR ¼ 0) and (b) elastically supported (CT ¼ CR ¼ 10): ——— for wet modes (d ¼ L ¼ 22m); – – – – for dry

modes ðd ¼ 0Þ:
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5. Conclusions
1.
 The exact natural frequencies and the corresponding mode shapes of an immersed doubly
tapered beam can be determined using the theory presented in this paper. The reliability of the
numerical results has been confirmed by those obtained from the conventional finite element
method.
2.
 For convenience, one may predict the dynamic behaviours of a ‘‘fixed’’ supported tower from
those of its corresponding ‘‘elastically’’ supported one by letting the sliding spring constant kT

and the rocking spring constant kR to approach infinity, e.g., kT ¼ kR ¼ 1026 N=m (or N m).
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3.
 The influence of water depths (d) on the first natural frequencies o1 of a tower is negligible, no
matter whether the soil stiffness ratios CT ¼ CR ¼ 0; 0.1, 1.0 or 10, particularly for the fixed
supported tower (with CT ¼ CR ¼ 0). However, the last phenomenon is not true for the other
orders of natural frequencies or (r ¼ 2� 5). For the latter, the influence of water depth on the
natural frequencies of a tower increases with the increase in vibration order r.
4.
 Either fixed or elastically supported, the influence of added mass on the mode shapes of a tower
is negligible. In other words, the mode shapes of a wet tower (with da0) are very close to the
corresponding ones of the dry tower (with d ¼ 0).
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